Integrating to find speed vs. time when a drag is present

$$a_y = \frac{\sum F_y}{m}$$

$$\frac{\mathrm{d}v_{y}}{\mathrm{d}t} = \frac{+F_{\mathrm{G}} - F_{\mathrm{DRAG}}}{m}$$

Suppose $F_{DRAG} = b|v|$.

$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = \frac{+mg - b|v|}{m} = g - \frac{b}{m}v_y$$

Early times (just after releasing object)

$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = g - \frac{b}{m} \frac{0}{v_y}$$

Intermediate time t

$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = g - \frac{b}{m}v_y$$

$$\int_{v_y = v_{y,i}} \frac{1}{g - \frac{b}{m}v_y} \, \mathrm{d}v_y = \int_{t = t_i}^{t = t_f} \, \mathrm{d}t$$

$$-\frac{m}{b} \left[\ln \left| g - \frac{b}{m}v_y \right| \right]_{v_y = v_{y,i}}^{v_y = v_{y,i}} = t_f - t_i$$

Note: $g - \frac{b}{m}v_y > 0$

$$-\frac{m}{b}\ln\left(\frac{g-\frac{b}{m}v_{y,f}}{g-\frac{b}{m}v_{y,i}}\right) = t_f - t_i$$

$$\frac{|\text{Time}| \ y\text{-velocity}}{|\text{Initial}| \ t_i = 0 \ |v_{y,i} = 0|}$$

$$\overline{\text{Final}} \ |t_f = t \ |v_{y,f} = v_y$$

$$v_y = \frac{mg}{b}\left(1 - e^{-\frac{b}{m}t}\right)$$

Late times (long after releasing object)

$$\frac{\overrightarrow{dv_y}}{dt} = g - \frac{b}{m} \overrightarrow{v_y}$$

$$v_{\rm T} = \frac{mg}{b}$$

